ТЕОРЕТИЧЕСКИЙ АНАЛИЗ РАСПРОСТРАНЕНИЯ ПОТЕНЦИАЛА ДЕЙСТВИЯ У РАСТЕНИЙ С ИСПОЛЬЗОВАНИЕМ ДВУМЕРНОЙ СИСТЕМЫ ВОЗБУДИМЫХ ЭЛЕМЕНТОВ

Сухов В.С., Неруш В.Н., Морозова Е.Н., Воденеев В.А.

Нижегородский государственный университет им. Н.И. Лобачевского, Россия, 60350, Нижний Новгород, пр. Гагарина, д. 23, корп. 1, каф. биофизики, тел. 8(831)4656106, e-mail: vssuh@mail.ru

Потенциалы действия (ПД) являются одним из стрессовых сигналов у растительных объектов, однако исследование их функциональной роли требует знания механизмов генерации и распространения. Ионные механизмы генерации ПД являются относительно изученными, в то время как пути их распространения остаются дискуссионными. Рассматривают два потенциальных пути передачи ПД — симпласт паренхимных клеток проводящих пучков и ситовидные элементы флоэмы. Электрические сигналы были экспериментально зарегистрированы в клетках обоих типов, что позволяет предположить их совместное участие в проведении ПД у растений. Для проверки этого предположения могут быть использованы теоретические методы, в частности, метод математического моделирования.

При описании генерации ПД использовали ранее разработанную нами детальную модель формирования электрического ответа у высшего растения. Для описания распространения использовали двумерную систему возбудимых элементов (800х30 клеток) с локальной электрической связью. При имитации неоднородной системы (комплекс симпласт паренхимных клеток и ситовидные элементы), ситовидные элементы описывали как ряды клеток с более сильной электрической связью. Количество таких рядов варьировало от 1 до 7. Модель анализировали численно, с использованием специально написанной в среде Borland Delphi 7 программы.

Показано, что в однородной системе, состоящей из элементов с одинаковой электрической связью, при увеличении межклеточной проводимости возрастает скорость распространения ПД и порог его генерации. Последнее может быть связано с ростом электродиффузии заряда из области раздражения. При введении в систему со слабой электрической связью рядов сильно электрически связанных клеток (имитирующих ситовидные элементы), скорость распространения ПД повышалась, приближаясь к скорости проведения электрического сигнала в системе состоящей только из элементов с сильной электрической связью. При этом порог генерации ПД в неоднородной системе был существенно ниже, чем в однородной системе с сильной электрической связью.

На основании полученных результатов можно заключить, что наличие в системе элементов с сильной (ситовидные элементы) и со слабой (перенхимные клетки) электрической связью повышает эффективность генерации и распространения ПД в ней.

Работа выполнена при финансовой поддержке гранта РФФИ 09-04-01413-а.