ИЗУЧЕНИЕ ВЛИЯНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ НА КЛЕТКИ CHLORELLA VULGARIS ПОМОЩЬЮ КЛАССИФИКАТОРА «СЛУЧАЙНЫЙ ЛЕС»

Червицов Р.Н., Плюснина Т.Ю., Хрущев С.С., Тодоренко Д.А.

Биологический факультет Московского государственного университета им. М.В. Ломоносова, Москва, 119234, Россия, roman123qwe123@gmail.com

В настоящее время актуален вопрос определения присутствия в водной среде различных токсикантов, таких как ионы тяжелых металлов, поскольку их присутствие вызывает нарушение фотосинтетических процессов и повреждение клеток водорослей, что в конечном итоге может приводить к массовой гибели фотосинтетических организмов и нарушению баланса водных экосистем. Один из методов, позволяющих определить присутствие тяжелых металлов в среде, связан с измерением кривых индукции флуоресценции хлорофилла а, характеризующих состояние фотосинтетического аппарата клеток тестовых фотосинтетических организмов и изменяющих свою форму при воздействии различных факторов стресса. Из индукционных кривых могут быть рассчитаны параметры ЛР-теста, характеризующие состояние отдельных элементов фотосинтетического аппарата. При обработке больших массивов таких данных целесообразно применять методы машинного обучения, в частности — алгоритм классификации «случайный лес».

В данной работе в качестве тестового организма использовалась зеленая водоросль Chlorella vulgaris. Клетки водорослей инкубировались в течение 60 часов, раз в час измерялась кривая индукции флуоресценции. Токсиканты (CdSO₄ или K₂Cr₂O₇ в концентрации 20 или 50 мкМ) добавлялись на 17 часу инкубации. Далее, для данных, полученных в интервале от 17 до 60 часов культивирования, были построены классификаторы по алгоритму случайного леса, где в качестве признаков для классификации использовались параметры JIP-теста. Классификатор для определения наличия или отсутствия токсиканта имеет точность 92% при определении контрольных данных и 94% при определении данных для проб с токсикантом. Классификатор для определения вида токсиканта (кадмий или хром) определяет контрольные данные также с точностью 92%; точность определения проб с кадмием составляет 73%, а проб с хромом – 89%. Показано также, что на точность классификации влияет интенсивность измерительного света: при снижении интенсивности возбуждающего света для измерения индукционных кривых снижается интенсивность флуоресценции, что ведет к снижению точности классификации, поскольку различия между данными для контрольных проб и проб с токсикантами становятся менее выраженными (значения точности приведены для наибольшей интенсивности измерительного света). Наиболее значимым для классификации из параметров JIP-теста является параметр Fv/Fm – квантовый выход первичной фотохимии, характеризующий эффективность работы фотосистемы II. Таким образом, существуют перспективы применения данного метода для оценки состояния водной среды в естественных местообитаниях.

Работа выполнена при поддержке гранта РНФ №22-11-00009.