ПОТЕНЦИАЛЬНАЯ ПЕРКОЛЯЦИЯ ФРАКТАЛЬНЫХ БРОУНОВСКИХ ФУНКЦИЙ

Москалев П.В.

Воронежский государственный аграрный университет имени императора Петра I, Россия, 394087, г. Воронеж, ул. Мичурина, 1, +7(473)224-39-39(+3317), moskalefff@gmail.com

Модели перколяции или протекания предназначены анализа глобальных свойств связных подмножеств (кластеров) в какой-либо случайно-неоднородной среде, по способам описания которой их можно разделить на модели решёточной, континуальной и потенциальной перколяции [1]. Последний случай сводится к определению в некоторой области $D \subseteq \mathbf{R}^n$ функции стохастического потенциала $\phi(x)$, где $x = (x_1, x_2, ..., x_n)$, а кластеры образуются из связных подмножеств точек, чей потенциал ниже заданного уровня $\phi(x) \leq \phi_0$. Нетрудно проверить, что по мере увеличения уровня $\phi_0 \in [\phi_{min}, \phi_{max}]$ суммарная мера отсекаемых от потенциальной поверхности кластеров будет возрастать, вплоть до появления стягивающего кластера, размер которого в заданном направлении будет равен размеру выделенной области D.

Для формирования стохастического потенциала воспользуемся моделью фрактальной броуновской функции, полученной с помощью алгоритма последовательных случайных сложений: $\phi_k = \phi_{k-1} + \Delta \phi_k$, где $\Delta \phi_k \sim \mathbf{N}(0,\sigma_k)$ – центрированное нормально распределённое приращение, определённое на k-ой итерации для $N_k = (2^k+1)^n$ точек. Стандартное отклонение приращений обычно полагается экспоненциально убывающей функцией $\sigma_k = 2^{-H}\sigma_{k-1}$, где $H \in [0,1]$ – показатель Хёрста, а начальное значение $\sigma_0 = 1 - 2^{-H}$ нормируется по сумме ряда $\sum_{k=0}^{\infty} \sigma_k = 1$. Реализация описанного алгоритма [2] позволяет получать стохастически самоаффинные реализации фрактальных броуновских функций, отличающихся от классических отсутствием независимости между нормально распределёнными приращениями $\Delta \phi_k$ и $\Delta \phi_j$ при $k \neq j$.

Можно показать, что зависимость относительной доли площади $s(\phi_0|H)$, отсекаемой от двумерной потенциальной поверхности $\phi(x_1,x_2) \leq \phi_0$ на заданном уровне ϕ_0 при любом фиксированном $H \in (0,1)$, оказывается топологически подобна частоте возникновения стягивающего кластера w(p|L) на однородной решётке в задачах решёточной перколяции, где эффект от изменения показателя Хёрста $0 \leq H \leq 1$ будет аналогичен эффекту от изменения размера решётки $0 \leq L \leq \infty$, а эффект от изменения уровня потенциала $\phi_{min} \leq \phi_0 \leq \phi_{max}$ — эффекту от изменения относительной доли достижимых узлов перколяционной решётки $0 \leq p \leq 1$.

Литература

- 1. *Москалев П.В.* Перколяционное моделирование пористых структур. М.: URSS, 2018. 240 с.
- 2. *Moskalev P.V.* Voss: Generic Voss algorithm (random sequential additions). R package version 0.1-4. URL: https://cran.r-project.org/package=Voss.