ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА ПОЛУГРУППЫ КЛАССА C_0

Гриднева И.В.

Воронежский государственный аграрный университет им. К.Д. Глинки, Агроинженерный ф-т, каф. высшей математики и теоретической механики, Россия, 394087, г. Воронеж, ул. Ушинского 68, Тел.: (0732)90-17-57, E-mail: gridneva irina@bk.ru

Пусть H-J-пространство, т.е. гильбертово пространство, снабженное индефинитным скалярным произведением $[\cdot,\cdot]=(J\cdot,\cdot)$, где J- самосопряженный и одновременно унитарный оператор. Предположим, что при $t\in [0,\infty)$ определена однопараметрическая полугруппа U(t) класса C_0 , т.е. U(t+s)=U(t)U(s), U(0)=I и $\lim_{t\to t_0} U(t)x=U(t_0)x$ для любого $x\in H$.

Отметим, что работа выполнена совместно с Т. Я. Азизовым при поддержке гранта РФФИ 08—01-00566-a.

Теорема 1. Пусть $U(t)-C_0$ - полугруппа, $\|U(t)\| \le e^{\omega t}$, M > 0, $\omega \ge 0$, A - генератор U(t), $a V = (A + \omega + I)(A - \omega - I)^{-1} -$ когенератор для U(t). Тогда следующие условия эквивалентны:

- (i) Подпространство L инвариантно относительно U(t) при каждом t.
- (ii) Подпространство L инвариантно относительно A и \emptyset + 1 \in $\rho(A|_{L})$.
- (iii) Подпространство L инвариантно относительно V.

Неотрицательное (неположительное) подпространство L пространства H назовем подпространством класса h^+ (класса h^-), если оно допускает разложение $L = L_0[\dotplus]L^+$ ($L = L_0[\dotplus]L^-$) в прямую J-ортогональную сумму конечномерного изотропного подпространства L_0 и равномерно положительного (равномерно отрицательного) подпространства L^+ (L^-).

Оператор A принадлежит классу H, если у него есть хотя бы одна пара максимальных семидефинитных инвариантных подпространств и каждые такие подпространства принадлежат h^{\pm} соответственно. Скажем, что оператор A принадлежит классу K(H), если существует такой J-бинесжимающий оператор $B \in H$, что резольвенты операторов A и B коммутируют ($BA \subseteq AB$).

Теорема 2. Если $A \in K(H)$, то у полугруппы U(t) существует максимальное неотрицательное подпространство класса h^+ и максимальное неположительное подпространство класса h^- . Более того, если $L^{\pm} \in h^{\pm}$ — инвариантные подпространства оператора A, то они допускают расширение до максимальных подпространств, инвариантных относительно U(t).