КАЛЕНДАРНОЕ ПЛАНИРОВАНИЕ С УЧЕТОМ ДИРЕКТИВНЫХ СРОКОВ

Аснина А.Я., Аснина Н.Г.1, Сырых О.С.

Воронежский государственный университет, Россия, 394006, Воронеж, Университетская пл. д. 1, 89517726488, rizhik7771@mail.ru

¹Воронежский государственный архитектурно-строительный университет, Россия, 394006, Воронеж, ул. 20-летия Октября, д. 84, 89036500675

Пусть имеется мультипроект содержащий п подпроектов. На каждый і-тый проект требуются инвестиции c_i и время выполнения t_i . D_i —доход от і-ой работы. α — месячная норма дисконта. За T_i мы будем принимать директивный срок і-ого проекта.

Требуется определить порядок запуска подпроектов так, чтобы директивные сроки выполнялись, а NPV всего мультипроекта был максимальным.

В докладе рассмотрен вариант, когда директивные сроки выполняются.

Для мультипроектов без директивных сроков были ранее выведены правила упорядочения с целью получения максимального чистого дисконтированного дохода.

Для случая, когда инвестиции осуществляются в момент запуска каждого подпроекта, мы так же упорядочим работы по определенному коэффициенту k_2 . Формула для k_2 имеет вид:

$$k2 = Di-cia(1+a)tiStia$$
, $Stia = (1+a)ti -1a$ (1)

Stia – коэффициент наращения ренты при сроке t_i и норме дисконта α .

Затем упорядочим подпроекты в порядке невозрастания k_2 .

Экономический смысл k_2 <0 в том, что подпроект с таким коэффициентом никогда не окупится за счет своих инвестиций.

Если для каждого подпроекта заданы директивные сроки, то можно предложить алгоритм, идея которого в следующем:

Как следует из правила (1) ,последним в расписании будет стоять подпроект с минимальным k_2 . А заканчиватся его выполнение будет в момент времени : A=i=1nti

Для выполнения директивных сроков подпроектов необходимо на последнее место поставить проект, у которого директивный срок не меньше A. Если таких подпроектов несколько, выбираем тот, у которого k_2 наименьший. Затем следуя алгоритмувыстраиваем новое расписание.

В докладе представлен сам алгоритм, а так же рассмотрены случаи невыполнения директивных сроков.

Литература

1. А.Я. Аснина, Н.Г. Аснина, С.А Самодурова Математическое моделирование инвестиционной деятельности. Издательско-полиграфический центр ВГУ, 2012. 44 с.