SECOND SOLUTIONS OF SOME WHOLE NUMBER EQUATIONS

Smolygin V.D.

Tel.: 891683487 96, E-mail: smolyg@yandex.ru

The possibilities have been proved for the use of full-parallel solution method (FP method) for finding the second nontrivial solutions for some whole number equations.

The second nontrivial solutions have been defined for the equation $\mathrm{X} 2+\mathrm{Y} 2=\mathrm{Z2}$ and equation $x 2-A y 2=1$ in whole numbers.

For example, for the equation $\mathrm{X} 2+\mathrm{Y} 2=\mathrm{Z2}$:

- there are solutions: $\mathrm{X} 1=\mathrm{m} 2-\mathrm{n} 2, \mathrm{Y} 1=2 \mathrm{~m} \cdot \mathrm{n}, \mathrm{Z} 1=\mathrm{m} 2-\mathrm{n} 2$ [1];
- other solutions: $\mathrm{X} 2=2 n-m 2-n 2, Y 2=22 n-m \cdot n, Z 2=2 n-m 2+n 2[2]$.

Here: m and n are mutually heterogeneous prime * numbers, $\mathrm{m}>\mathrm{n}$.
The transformation of equations from multiple unknowns using FP method will define so many equations from one unknown as the number of unknowns contained in this equation; the highest degree of equation from one unknown is equal to the highest degree of monomials included into the equation from multiple unknowns.

Two solutions are defined for the equation $\mathrm{X}+\mathrm{Y} 2=\mathrm{Z2}$ in whole numbers.
Three solutions are defined for the equation $X+Y 3=Z 3$ in whole numbers.
The second solution examples are given for some of the solved equations in square whole numbers and higher from multiple unknowns.
*Two numbers one of which is even and another is odd are called heterogeneous.

References.

1. G.Rademacher and O. Teplits Numbers and figures. Experiments of mathematic thinking. M.: State publishing house of physical-mathematical literature, 1962. 264 pages.
2. Smolygin V.D. Two roots of equation type $\mathrm{X} 2+\mathrm{Y} 2=Z 2$ (Two solutions of the equation type $\mathrm{X} 2+\mathrm{Y} 2=\mathrm{Z2}$) // United scientific journal № 28. Moscow: Scientific publications' fund. 2005. pg. 68-76.
